首页
关于我们
304am永利集团官方简介
经理致辞
领导团队
历史沿革
团队队伍
教职人员
实验室人员
科学研究
研究团队
研究进展
支撑平台
人才培养
旗下产业
研究生教育
党团工作
党建工作
团建工作
教师风采
员工寄语
招生录取
本科生招生
研究生招生
暑期研学营
国际交流
交流访问
学术会议
最新动态
学术讲座
通知公告
304am永利集团官方新闻
人大主页
邮箱登录

Relativistic energy band theory and its code development in the FHI-aims code package

2019-12-27
【报告题目】 Relativistic energy band theory and its code development in the FHI-aims code package
【报 告 人】 Dr. Rundong Zhao
Mechanical Engineering and Materials Science, Duke University
【时 间】 2019-12-27     2:30 pm (Friday)
【地 点】 北园106报告厅

【报告摘要】

This talk presents a fully relativistic density functional method (named quasi-four-component algorithm, Q4C) under the framework of numeric atom-centered orbitals (NAOs). Q4C initially projects the atomic solution to (electron-only) positive-energy states and eventually deals with only two components but retains the full precision of traditional four-component relativistic methods. While Q4C inherently reduces the dimension of the Hamiltonian matrix and the corresponding computational demand in diagonalization, the adoption of localized NAO basis functions in solids further reduces the computational demand in real space operations, enabling us to investigate large and complex systems containing heavy elements fully relativistically. As benchmarks, the relativistic band structures of 103 common materials are reported. I will also demonstrate the applicability of the massively parallel method to complex hybrid organic-inorganic (HOIP) perovskites containing Pb and Bi


【报告人简介】

Rundong Zhao obtained his B.S. in Applied Physics from Shandong University in 2010, and his PhD in Physical Chemistry from Peking University in 2015. He then visited Beijing Computational Science Research Center from 2015 to 2016 and moved to Hong Kong Baptist University as a postdoctoral research fellow from 2016 to 2018. He is a postdoctoral associate at Duke University since Feb. 2018. His research interest is electronic structure theory, including both method/code development and application in bulk systems and surface science. He is the author of BDF-PBC (an DFT code for relativistic effects calculations in periodic systems) and a core developer of the FHI-aims electronic structure code. With the exact two-component (X2C) and quasi-four-component (Q4C) method implemented by him, FHI-aims is currently the first fully relativistic code that can work for large periodic systems (with hundreds of atoms in a unit cell) containing heavy elements, in which the SOC effect is significant but was not treated exactly. These systems involve: perovskites, topological insulators, etc.



相关推荐
读取内容中,请等待...